metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.46D14, C23.10Dic14, C14.43(C4×D4), C23.D7⋊10C4, C22.97(D4×D7), C23.25(C4×D7), C14.35C22≀C2, (C22×C14).62D4, (C22×C4).26D14, C2.1(C23⋊D14), (C22×C14).11Q8, C7⋊2(C23.8Q8), C22⋊2(Dic7⋊C4), (C2×Dic7).173D4, C23.51(C7⋊D4), C14.16(C22⋊Q8), (C23×Dic7).4C2, C14.C42⋊12C2, (C22×C28).23C22, (C23×C14).29C22, C22.24(C2×Dic14), C23.279(C22×D7), C2.26(Dic7⋊4D4), C22.45(D4⋊2D7), (C22×C14).321C23, C2.6(C22⋊Dic14), C14.72(C22.D4), C2.3(C23.18D14), (C22×Dic7).37C22, (C2×C14)⋊2(C4⋊C4), C14.30(C2×C4⋊C4), (C2×Dic7⋊C4)⋊8C2, (C2×Dic7)⋊4(C2×C4), C2.6(C2×Dic7⋊C4), (C2×C22⋊C4).8D7, (C2×C14).31(C2×Q8), C22.125(C2×C4×D7), (C2×C14).315(C2×D4), (C14×C22⋊C4).7C2, C22.49(C2×C7⋊D4), (C2×C23.D7).8C2, (C22×C14).49(C2×C4), (C2×C14).141(C4○D4), (C2×C14).107(C22×C4), SmallGroup(448,480)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.46D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=b, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be13 >
Subgroups: 916 in 234 conjugacy classes, 83 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic7, C2×Dic7, C2×C28, C22×C14, C22×C14, C22×C14, C23.8Q8, Dic7⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×Dic7⋊C4, C2×C23.D7, C14×C22⋊C4, C23×Dic7, C24.46D14
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, D14, C2×C4⋊C4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, Dic14, C4×D7, C7⋊D4, C22×D7, C23.8Q8, Dic7⋊C4, C2×Dic14, C2×C4×D7, D4×D7, D4⋊2D7, C2×C7⋊D4, C22⋊Dic14, Dic7⋊4D4, C2×Dic7⋊C4, C23.18D14, C23⋊D14, C24.46D14
(1 101)(2 198)(3 103)(4 200)(5 105)(6 202)(7 107)(8 204)(9 109)(10 206)(11 111)(12 208)(13 85)(14 210)(15 87)(16 212)(17 89)(18 214)(19 91)(20 216)(21 93)(22 218)(23 95)(24 220)(25 97)(26 222)(27 99)(28 224)(29 115)(30 84)(31 117)(32 58)(33 119)(34 60)(35 121)(36 62)(37 123)(38 64)(39 125)(40 66)(41 127)(42 68)(43 129)(44 70)(45 131)(46 72)(47 133)(48 74)(49 135)(50 76)(51 137)(52 78)(53 139)(54 80)(55 113)(56 82)(57 161)(59 163)(61 165)(63 167)(65 141)(67 143)(69 145)(71 147)(73 149)(75 151)(77 153)(79 155)(81 157)(83 159)(86 174)(88 176)(90 178)(92 180)(94 182)(96 184)(98 186)(100 188)(102 190)(104 192)(106 194)(108 196)(110 170)(112 172)(114 158)(116 160)(118 162)(120 164)(122 166)(124 168)(126 142)(128 144)(130 146)(132 148)(134 150)(136 152)(138 154)(140 156)(169 205)(171 207)(173 209)(175 211)(177 213)(179 215)(181 217)(183 219)(185 221)(187 223)(189 197)(191 199)(193 201)(195 203)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 111)(26 112)(27 85)(28 86)(29 129)(30 130)(31 131)(32 132)(33 133)(34 134)(35 135)(36 136)(37 137)(38 138)(39 139)(40 140)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 147)(58 148)(59 149)(60 150)(61 151)(62 152)(63 153)(64 154)(65 155)(66 156)(67 157)(68 158)(69 159)(70 160)(71 161)(72 162)(73 163)(74 164)(75 165)(76 166)(77 167)(78 168)(79 141)(80 142)(81 143)(82 144)(83 145)(84 146)(169 219)(170 220)(171 221)(172 222)(173 223)(174 224)(175 197)(176 198)(177 199)(178 200)(179 201)(180 202)(181 203)(182 204)(183 205)(184 206)(185 207)(186 208)(187 209)(188 210)(189 211)(190 212)(191 213)(192 214)(193 215)(194 216)(195 217)(196 218)
(1 189)(2 190)(3 191)(4 192)(5 193)(6 194)(7 195)(8 196)(9 169)(10 170)(11 171)(12 172)(13 173)(14 174)(15 175)(16 176)(17 177)(18 178)(19 179)(20 180)(21 181)(22 182)(23 183)(24 184)(25 185)(26 186)(27 187)(28 188)(29 159)(30 160)(31 161)(32 162)(33 163)(34 164)(35 165)(36 166)(37 167)(38 168)(39 141)(40 142)(41 143)(42 144)(43 145)(44 146)(45 147)(46 148)(47 149)(48 150)(49 151)(50 152)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 127)(68 128)(69 129)(70 130)(71 131)(72 132)(73 133)(74 134)(75 135)(76 136)(77 137)(78 138)(79 139)(80 140)(81 113)(82 114)(83 115)(84 116)(85 209)(86 210)(87 211)(88 212)(89 213)(90 214)(91 215)(92 216)(93 217)(94 218)(95 219)(96 220)(97 221)(98 222)(99 223)(100 224)(101 197)(102 198)(103 199)(104 200)(105 201)(106 202)(107 203)(108 204)(109 205)(110 206)(111 207)(112 208)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 48 87 120)(2 133 88 33)(3 46 89 118)(4 131 90 31)(5 44 91 116)(6 129 92 29)(7 42 93 114)(8 127 94 55)(9 40 95 140)(10 125 96 53)(11 38 97 138)(12 123 98 51)(13 36 99 136)(14 121 100 49)(15 34 101 134)(16 119 102 47)(17 32 103 132)(18 117 104 45)(19 30 105 130)(20 115 106 43)(21 56 107 128)(22 113 108 41)(23 54 109 126)(24 139 110 39)(25 52 111 124)(26 137 112 37)(27 50 85 122)(28 135 86 35)(57 200 147 178)(58 191 148 213)(59 198 149 176)(60 189 150 211)(61 224 151 174)(62 187 152 209)(63 222 153 172)(64 185 154 207)(65 220 155 170)(66 183 156 205)(67 218 157 196)(68 181 158 203)(69 216 159 194)(70 179 160 201)(71 214 161 192)(72 177 162 199)(73 212 163 190)(74 175 164 197)(75 210 165 188)(76 173 166 223)(77 208 167 186)(78 171 168 221)(79 206 141 184)(80 169 142 219)(81 204 143 182)(82 195 144 217)(83 202 145 180)(84 193 146 215)
G:=sub<Sym(224)| (1,101)(2,198)(3,103)(4,200)(5,105)(6,202)(7,107)(8,204)(9,109)(10,206)(11,111)(12,208)(13,85)(14,210)(15,87)(16,212)(17,89)(18,214)(19,91)(20,216)(21,93)(22,218)(23,95)(24,220)(25,97)(26,222)(27,99)(28,224)(29,115)(30,84)(31,117)(32,58)(33,119)(34,60)(35,121)(36,62)(37,123)(38,64)(39,125)(40,66)(41,127)(42,68)(43,129)(44,70)(45,131)(46,72)(47,133)(48,74)(49,135)(50,76)(51,137)(52,78)(53,139)(54,80)(55,113)(56,82)(57,161)(59,163)(61,165)(63,167)(65,141)(67,143)(69,145)(71,147)(73,149)(75,151)(77,153)(79,155)(81,157)(83,159)(86,174)(88,176)(90,178)(92,180)(94,182)(96,184)(98,186)(100,188)(102,190)(104,192)(106,194)(108,196)(110,170)(112,172)(114,158)(116,160)(118,162)(120,164)(122,166)(124,168)(126,142)(128,144)(130,146)(132,148)(134,150)(136,152)(138,154)(140,156)(169,205)(171,207)(173,209)(175,211)(177,213)(179,215)(181,217)(183,219)(185,221)(187,223)(189,197)(191,199)(193,201)(195,203), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,85)(28,86)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,147)(58,148)(59,149)(60,150)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,161)(72,162)(73,163)(74,164)(75,165)(76,166)(77,167)(78,168)(79,141)(80,142)(81,143)(82,144)(83,145)(84,146)(169,219)(170,220)(171,221)(172,222)(173,223)(174,224)(175,197)(176,198)(177,199)(178,200)(179,201)(180,202)(181,203)(182,204)(183,205)(184,206)(185,207)(186,208)(187,209)(188,210)(189,211)(190,212)(191,213)(192,214)(193,215)(194,216)(195,217)(196,218), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,141)(40,142)(41,143)(42,144)(43,145)(44,146)(45,147)(46,148)(47,149)(48,150)(49,151)(50,152)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,113)(82,114)(83,115)(84,116)(85,209)(86,210)(87,211)(88,212)(89,213)(90,214)(91,215)(92,216)(93,217)(94,218)(95,219)(96,220)(97,221)(98,222)(99,223)(100,224)(101,197)(102,198)(103,199)(104,200)(105,201)(106,202)(107,203)(108,204)(109,205)(110,206)(111,207)(112,208), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,48,87,120)(2,133,88,33)(3,46,89,118)(4,131,90,31)(5,44,91,116)(6,129,92,29)(7,42,93,114)(8,127,94,55)(9,40,95,140)(10,125,96,53)(11,38,97,138)(12,123,98,51)(13,36,99,136)(14,121,100,49)(15,34,101,134)(16,119,102,47)(17,32,103,132)(18,117,104,45)(19,30,105,130)(20,115,106,43)(21,56,107,128)(22,113,108,41)(23,54,109,126)(24,139,110,39)(25,52,111,124)(26,137,112,37)(27,50,85,122)(28,135,86,35)(57,200,147,178)(58,191,148,213)(59,198,149,176)(60,189,150,211)(61,224,151,174)(62,187,152,209)(63,222,153,172)(64,185,154,207)(65,220,155,170)(66,183,156,205)(67,218,157,196)(68,181,158,203)(69,216,159,194)(70,179,160,201)(71,214,161,192)(72,177,162,199)(73,212,163,190)(74,175,164,197)(75,210,165,188)(76,173,166,223)(77,208,167,186)(78,171,168,221)(79,206,141,184)(80,169,142,219)(81,204,143,182)(82,195,144,217)(83,202,145,180)(84,193,146,215)>;
G:=Group( (1,101)(2,198)(3,103)(4,200)(5,105)(6,202)(7,107)(8,204)(9,109)(10,206)(11,111)(12,208)(13,85)(14,210)(15,87)(16,212)(17,89)(18,214)(19,91)(20,216)(21,93)(22,218)(23,95)(24,220)(25,97)(26,222)(27,99)(28,224)(29,115)(30,84)(31,117)(32,58)(33,119)(34,60)(35,121)(36,62)(37,123)(38,64)(39,125)(40,66)(41,127)(42,68)(43,129)(44,70)(45,131)(46,72)(47,133)(48,74)(49,135)(50,76)(51,137)(52,78)(53,139)(54,80)(55,113)(56,82)(57,161)(59,163)(61,165)(63,167)(65,141)(67,143)(69,145)(71,147)(73,149)(75,151)(77,153)(79,155)(81,157)(83,159)(86,174)(88,176)(90,178)(92,180)(94,182)(96,184)(98,186)(100,188)(102,190)(104,192)(106,194)(108,196)(110,170)(112,172)(114,158)(116,160)(118,162)(120,164)(122,166)(124,168)(126,142)(128,144)(130,146)(132,148)(134,150)(136,152)(138,154)(140,156)(169,205)(171,207)(173,209)(175,211)(177,213)(179,215)(181,217)(183,219)(185,221)(187,223)(189,197)(191,199)(193,201)(195,203), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,85)(28,86)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,147)(58,148)(59,149)(60,150)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,161)(72,162)(73,163)(74,164)(75,165)(76,166)(77,167)(78,168)(79,141)(80,142)(81,143)(82,144)(83,145)(84,146)(169,219)(170,220)(171,221)(172,222)(173,223)(174,224)(175,197)(176,198)(177,199)(178,200)(179,201)(180,202)(181,203)(182,204)(183,205)(184,206)(185,207)(186,208)(187,209)(188,210)(189,211)(190,212)(191,213)(192,214)(193,215)(194,216)(195,217)(196,218), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,141)(40,142)(41,143)(42,144)(43,145)(44,146)(45,147)(46,148)(47,149)(48,150)(49,151)(50,152)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,113)(82,114)(83,115)(84,116)(85,209)(86,210)(87,211)(88,212)(89,213)(90,214)(91,215)(92,216)(93,217)(94,218)(95,219)(96,220)(97,221)(98,222)(99,223)(100,224)(101,197)(102,198)(103,199)(104,200)(105,201)(106,202)(107,203)(108,204)(109,205)(110,206)(111,207)(112,208), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,48,87,120)(2,133,88,33)(3,46,89,118)(4,131,90,31)(5,44,91,116)(6,129,92,29)(7,42,93,114)(8,127,94,55)(9,40,95,140)(10,125,96,53)(11,38,97,138)(12,123,98,51)(13,36,99,136)(14,121,100,49)(15,34,101,134)(16,119,102,47)(17,32,103,132)(18,117,104,45)(19,30,105,130)(20,115,106,43)(21,56,107,128)(22,113,108,41)(23,54,109,126)(24,139,110,39)(25,52,111,124)(26,137,112,37)(27,50,85,122)(28,135,86,35)(57,200,147,178)(58,191,148,213)(59,198,149,176)(60,189,150,211)(61,224,151,174)(62,187,152,209)(63,222,153,172)(64,185,154,207)(65,220,155,170)(66,183,156,205)(67,218,157,196)(68,181,158,203)(69,216,159,194)(70,179,160,201)(71,214,161,192)(72,177,162,199)(73,212,163,190)(74,175,164,197)(75,210,165,188)(76,173,166,223)(77,208,167,186)(78,171,168,221)(79,206,141,184)(80,169,142,219)(81,204,143,182)(82,195,144,217)(83,202,145,180)(84,193,146,215) );
G=PermutationGroup([[(1,101),(2,198),(3,103),(4,200),(5,105),(6,202),(7,107),(8,204),(9,109),(10,206),(11,111),(12,208),(13,85),(14,210),(15,87),(16,212),(17,89),(18,214),(19,91),(20,216),(21,93),(22,218),(23,95),(24,220),(25,97),(26,222),(27,99),(28,224),(29,115),(30,84),(31,117),(32,58),(33,119),(34,60),(35,121),(36,62),(37,123),(38,64),(39,125),(40,66),(41,127),(42,68),(43,129),(44,70),(45,131),(46,72),(47,133),(48,74),(49,135),(50,76),(51,137),(52,78),(53,139),(54,80),(55,113),(56,82),(57,161),(59,163),(61,165),(63,167),(65,141),(67,143),(69,145),(71,147),(73,149),(75,151),(77,153),(79,155),(81,157),(83,159),(86,174),(88,176),(90,178),(92,180),(94,182),(96,184),(98,186),(100,188),(102,190),(104,192),(106,194),(108,196),(110,170),(112,172),(114,158),(116,160),(118,162),(120,164),(122,166),(124,168),(126,142),(128,144),(130,146),(132,148),(134,150),(136,152),(138,154),(140,156),(169,205),(171,207),(173,209),(175,211),(177,213),(179,215),(181,217),(183,219),(185,221),(187,223),(189,197),(191,199),(193,201),(195,203)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,111),(26,112),(27,85),(28,86),(29,129),(30,130),(31,131),(32,132),(33,133),(34,134),(35,135),(36,136),(37,137),(38,138),(39,139),(40,140),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,147),(58,148),(59,149),(60,150),(61,151),(62,152),(63,153),(64,154),(65,155),(66,156),(67,157),(68,158),(69,159),(70,160),(71,161),(72,162),(73,163),(74,164),(75,165),(76,166),(77,167),(78,168),(79,141),(80,142),(81,143),(82,144),(83,145),(84,146),(169,219),(170,220),(171,221),(172,222),(173,223),(174,224),(175,197),(176,198),(177,199),(178,200),(179,201),(180,202),(181,203),(182,204),(183,205),(184,206),(185,207),(186,208),(187,209),(188,210),(189,211),(190,212),(191,213),(192,214),(193,215),(194,216),(195,217),(196,218)], [(1,189),(2,190),(3,191),(4,192),(5,193),(6,194),(7,195),(8,196),(9,169),(10,170),(11,171),(12,172),(13,173),(14,174),(15,175),(16,176),(17,177),(18,178),(19,179),(20,180),(21,181),(22,182),(23,183),(24,184),(25,185),(26,186),(27,187),(28,188),(29,159),(30,160),(31,161),(32,162),(33,163),(34,164),(35,165),(36,166),(37,167),(38,168),(39,141),(40,142),(41,143),(42,144),(43,145),(44,146),(45,147),(46,148),(47,149),(48,150),(49,151),(50,152),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,127),(68,128),(69,129),(70,130),(71,131),(72,132),(73,133),(74,134),(75,135),(76,136),(77,137),(78,138),(79,139),(80,140),(81,113),(82,114),(83,115),(84,116),(85,209),(86,210),(87,211),(88,212),(89,213),(90,214),(91,215),(92,216),(93,217),(94,218),(95,219),(96,220),(97,221),(98,222),(99,223),(100,224),(101,197),(102,198),(103,199),(104,200),(105,201),(106,202),(107,203),(108,204),(109,205),(110,206),(111,207),(112,208)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,48,87,120),(2,133,88,33),(3,46,89,118),(4,131,90,31),(5,44,91,116),(6,129,92,29),(7,42,93,114),(8,127,94,55),(9,40,95,140),(10,125,96,53),(11,38,97,138),(12,123,98,51),(13,36,99,136),(14,121,100,49),(15,34,101,134),(16,119,102,47),(17,32,103,132),(18,117,104,45),(19,30,105,130),(20,115,106,43),(21,56,107,128),(22,113,108,41),(23,54,109,126),(24,139,110,39),(25,52,111,124),(26,137,112,37),(27,50,85,122),(28,135,86,35),(57,200,147,178),(58,191,148,213),(59,198,149,176),(60,189,150,211),(61,224,151,174),(62,187,152,209),(63,222,153,172),(64,185,154,207),(65,220,155,170),(66,183,156,205),(67,218,157,196),(68,181,158,203),(69,216,159,194),(70,179,160,201),(71,214,161,192),(72,177,162,199),(73,212,163,190),(74,175,164,197),(75,210,165,188),(76,173,166,223),(77,208,167,186),(78,171,168,221),(79,206,141,184),(80,169,142,219),(81,204,143,182),(82,195,144,217),(83,202,145,180),(84,193,146,215)]])
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 4O | 4P | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 14 | ··· | 14 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | Q8 | D7 | C4○D4 | D14 | D14 | Dic14 | C4×D7 | C7⋊D4 | D4×D7 | D4⋊2D7 |
kernel | C24.46D14 | C14.C42 | C2×Dic7⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C23×Dic7 | C23.D7 | C2×Dic7 | C22×C14 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C23 | C23 | C23 | C22 | C22 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 4 | 2 | 2 | 3 | 4 | 6 | 3 | 12 | 12 | 12 | 6 | 6 |
Matrix representation of C24.46D14 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 13 | 0 | 0 | 0 | 0 |
25 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 8 | 0 | 0 |
0 | 0 | 0 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
6 | 7 | 0 | 0 | 0 | 0 |
3 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 7 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 28 | 0 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,25,0,0,0,0,13,13,0,0,0,0,0,0,11,0,0,0,0,0,8,21,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[6,3,0,0,0,0,7,23,0,0,0,0,0,0,27,12,0,0,0,0,7,2,0,0,0,0,0,0,0,28,0,0,0,0,1,0] >;
C24.46D14 in GAP, Magma, Sage, TeX
C_2^4._{46}D_{14}
% in TeX
G:=Group("C2^4.46D14");
// GroupNames label
G:=SmallGroup(448,480);
// by ID
G=gap.SmallGroup(448,480);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,254,219,184,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=b,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^13>;
// generators/relations